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Elastic Constants of the Central Force Model 
for Three Cubic Structures: 

Pressure Derivatives and Equations of State1 

ORSON L. ANDERSON 

Lamont-Doherty Geological Observatory of Columbia University 
Palisades, New York 10964 

The case of the generalized repulsive potential in the central force approximation is used 
in Born's lattice theory to .derive the elastic constants versus pressure for the NaCI, CsCI, and 
ZnS structures. The equatIons are rearranged so that e'l is a function of K and P the bulk 
modulus and .pressure. The isoth~rmal eq~ation of state relates K, P, and the de~sity p, so 
that the ~lastic constants are specific functIOns .of the relation between K and P, and p and P. 
AB a specIal case of the theory, the parameter m the repulsive potential n is evaluated by the 
measured. value Ko'. The theory shows that the simple repulsion v(r) = biT' accounts for 
the experImental results, except for a small term due to noncentral binding. 

INTRODUCTION 

It has been emphasized in several recent pub­
lications [Soga and Anderson, 1967 ' Soga 1969' 
Anderson, 1968; Anderson and 'Liebe'rman~, 
1970] that the shear velocity decreases with in­
creasing pressure for structures with low co­
ordination. This result has several geophysical 
applications and is of interest to lattice dynam­
ical theories. 

The fact that the shear velocity decreases 
with pressure is connected to the stability of 
the structure, because the lattice becomes un­
stable when a shear constant vanishes [Born, 
1940; Misra, 1940]. Obviously, if a shear con­
stant vanishes at the transition pressure, it 
must decrease with pressure in a range of pres­
sure just below the transition pressure. The 
question arises, under what circumstances will 
an elastic constant, e'l, decrease with pressure, 
P. 

In this paper I present the equations of the 
elastic constants as a function of pressure for 
NaCI, CsCl, and ZnS in the case of a central 
force model, where the attractive energy is 
coulombic and the repulsive energy is general­
ized. This is called the generalized ionic model. 

1 Lamont-Doherty Geological Observatory Con­
tribution No. 1493. 
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Some rather tentative e>..-tensions are made to 
the case of noncentral bonding. 

In the derivations I make two drastic as­
sumptions. The first is that the thermal pres­
sure can be ignored; consequently, the results 
are only strictly applicable at absolute zero. 
The second is that only first nearest neighbors 
are considered in the repulsion. These restric­
tions are slightly relaxed in subsequent sections 
to show that the assumptions affect only slightly 
the numerical results of the elastic constants 
e'l and de"ldp. After the elastic constants and 
the pressure derivatives are found for the gen­
eralized ionic model, the special case of the 
repUlsion law biT' is considered in detail. This 
law has been used many times before (Barron 
[1957]; Blackman [1957, 1958]; Reddy and 
Ruoff [1965]; R. W. Roberts, private communi­
cation, 1968), but it is extended to find the 
generalized isothermal equation of state, and the 
pressures derivatives of the elastic constants 
evaluated at zero pressure. 

LATTICE DYNAMIC EQUATIONS FOR 

DIATOMIC IONIC CRYSTALS 

The fundamental theory is due to Born 
[1926] and Born and Goppert-Meyer [1933], 
and the method of defining elastic constants 
using this theory closely follows that of Barron 
[1957] and of Blackman [1957, 1958]. 

Consider the lattice potential (energy per 
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unit cell) for a diatomic lattice where the ion- where V' is the Laplacian operator 
ion distance is r. 

(1) 

where A .. is the Madelung constant obtained by 
summing (Z,Z.et)/r over all lattice sites, and 
where M is the coordination number arising 
from summing the repulsion over next nearest 
neighbors. The repulsive potential v (r) is un­
specified except that it be a function of r, and 
that it vary so rapidly with r that only first 
neighbors of type k' need be considered around 
an ion of type k. 

The pressure is found from (1) by the opera­
tion 

dq, _ ~d¢ 
p = - dV = 3V dr 

A", 2 r dv 
- 3Vr ZlZ~ - 3V M dr (2) 

Partial derivatives are not used since all equa­
tions are understood to be taken under iso­
thermal conditions. 

Equilibrium establishes that 

Thus 

A Z.Z2e' = 
.. Varo 

Am Z Z 2 P = -3V 1 2e 
OrO 

_ ~ M (dV) 
Vo dT 0 

(3) 

Take 

Ko -= (7) 
a 

For one important repulsive function, v(r) = 
b/r", a has a simple interpretation. In this case 
{'V·v(r)}. = - (n - 1) (dv/dr) •. 

Using (6) and (3), a = (n - 1)/9, a number 
varying between 0.5 and 1.5 but typically unity. 
We shall assume that for all reasonable poten­
tials a is a number between 0.5 and 1.5 that 
is a measure of the strength of the repulsive 
potential. The variation of a with pressure de­
pends upon the pressure variation of the valence 
product Z,Z., if any. 

The bulk modulus, (5), can also be written as 

= M .!... [r d
2
v _ 2 dv] _ i Ko (p \ 4 /3 

9V dl dr 9a p"j 

(8) 

where the first term is the repulsive contribution 
to K, and where the second term is the Coulom­
bic contribution to K. 

The equations for the elastic constants equi­
valent to (8) are now considered. We have, in 
Born's notation, 

[( 
r(dv/ dr) \ (p )213 

• ro(dv/ dr)-;) Po 
(4) and 

The bulk modulus is given by 

_ iA ZlZ~2 (5) 
9 '" rV 

The value of K at P = 0, K., is obtained from 
(5) and (3) 

where C and D are the constants required for 
a nonccntrosymmetric lattice in which the cal­
culated value of c .. for the centrosymmetric 
lattice is modified by subtracting C'/D. The ap­
propriate lattice sums are well known [Cowley, 
1!l02]. We shall use them in the form given in 
Tables 1 and 4 of the paper by Anderson and 
Liebermann [1970]. Using these sums, wc find 
the general solutions for elastic constants, which 
are listed as follows: 

, 
• 

. • 


